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A B S T R A C T   

On account of lacking labeled samples for the bearing fault diagnosis in real engineering applications, transfer 
learning is widely investigated for transferring diagnosis information. A more challenging but realistic scenario 
called transfer across different machines (TDM) is investigated in this paper where previous approaches may 
degenerate greatly with more drastic domain shifts. A joint distribution adaptation-based transfer network with 
diverse feature aggregation (JDFA) is proposed, where the diverse feature aggregation module is added to 
enhance feature extraction capability across large domain gaps. Then the joint maximum mean discrepancy 
between source and target domain samples is adopted to reduce the distribution discrepancy automatically. 
Extensive TDM transfer learning experiments are conducted. The average accuracy reaches 99.178% that is much 
higher than state-of-the-art methods, demonstrating the proposed JDFA framework can effectively achieve su-
perior diagnostic performance, and significantly promote fault diagnosis research under TDM scenario in view of 
applicability and practicability of algorithms.   

1. Introduction 

As an essential component of rotating machinery, the reliability of 
rolling element bearing has attracted extensive attention in both aca-
demic and industrial fields. Recently, deep learning has been well 
investigated and applied to the intelligent bearing fault diagnosis due to 
its superiority on learning hierarchical representations of complicated 
data [1]. The success of implementing reliable deep learning models is 
based on a large amount of labeled data, however, it is unpractical to 
obtain sufficient labeled data covering different working scenarios [2]. 
Firstly, machines usually operate in healthy states and rarely malfunc-
tion, which results in unbalanced datasets with abundant health data 
and insufficient failure data. Secondly, it is hard to obtain labeled data 
from machines on different working regimes considering the enormous 
cost of manual data tagging, thus results in most of the data collected in 
the engineering scenarios are unlabeled. Limited by the two aforemen-
tioned reasons, the deep learning-based diagnosis models may degen-
erate greatly in engineering scenarios. To overcome this limitation, 
transfer learning becomes a promising solution by reusing the acquired 
diagnostic information to other relevant diagnostic tasks [3]. For 
bearing diagnostic issues, the distribution inconsistencies across training 

and unlabeled testing data could be well addressed through reducing 
distribution discrepancies with common transferable feature mappings, 
which relaxes the label assumption and facilitates the diagnosis per-
formance on different working scenarios. 

For the research of rolling element bearings’ fault diagnosis, the 
initial study is based on expert experience. The experience-based diag-
nosis method relies on subjective judgments, which are hard to achieve 
flexible fault diagnosis when the mechanical systems are complicated. In 
recent years, fault diagnosis has gradually developed into quantitative 
research. During this period, statistics-based research and data-driven 
research have attracted more attention [4–6]. By acquiring and 
analyzing vibration signal data of bearings, statistical or machine 
learning methods are used to establish bearing fault classification 
models. To a certain extent, this kind of research weakens the contri-
bution of human labor in machine fault diagnosis [7]. However, the 
feature selection and model design are primarily dependent on manual 
operation and experience, which may be inappropriate when dealing 
with complex data. Furthermore, signal processing methods have poor 
generalization ability because it is difficult to select comprehensive and 
widely applicable features manually, and traditional machine learning 
methods are mainly based on shallow layers of feature space, making it 
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difficult to extract non-linear and non-stationary feature forms of vi-
bration signals. As a large amount of data can be obtained from moni-
toring the state of machines, deep learning is gradually coming into the 
pictures. Deep learning is a new topic in the field of machine learning [8] 
and has also produced many achievements in the field of fault diagnosis 
[9–12]. In contrast to the above methods, deep learning can automati-
cally extract fault features from the collected data instead of extracting 
features manually. Moreover, because of its multiple network structure, 
deep learning can learn multiple layers representations from input data 
through deep architectures with multi-layer data processing unit [13], 
to deeply recognize the semantic features of data, and then effectively 
overcome the limitations of traditional machine learning methods. 

Compared with deep learning methods, transfer learning applies the 
knowledge learned from one or more tasks to other related but different 
domains [14]. It can overcome the weakness of lacking labels by reusing 
existing information to relevant domains based on already acquired 
datasets [1]. Related algorithms about transfer learning can trace back 
to 1995[15]. Since the 2010 s, some achievements have been yielded in 
the field of computer vision [16] and speech recognition [17], such as 
TrAdaboost [18], transfer component analysis (TCA) [19], joint distri-
bution adaptation (JDA) [20], deep adaptation networks (DAN) [21], 
adversarial domain adaptation (ADA) [22], et al. In the field of fault 
diagnosis, some researchers have begun to develop some researches 
[23–25]. These approaches are expected to provide diagnostic models 
that can transfer the diagnostic knowledge learned from one or some 
diagnostic tasks to other related but different tasks. Current studies show 
that transfer learning can accelerate the convergence, reduce the 
training time, and improve the accuracy of the classifier in the study of 
fault diagnosis. Thus, transfer learning theories are expected to over-
come the problem of insufficient labeled samples, through which diag-
nostic knowledge can be transferred from existing datasets to unlabeled 
bearing samples. 

Transfer learning task includes two datasets, which are respectively 
from the source domain and the target domain. The data in the target 
domain have relevant knowledge but may belong to different distribu-
tion compared with those in the source domain. Transfer learning can 
realize the transfer of knowledge contained in the source domain to the 
target domain, and reduce the distribution discrepancy between the 
source and the target domain samples, thereby improving the perfor-
mance of the predictive model for the target domain [3]. According to 
the different transfer scenarios, the current research can be roughly 
divided into two categories [7]: transfer in the same machine and 
transfer across different machines. Condition I: Transferring in the same 
machine means that the data is collected from the same machine, but 
data of the source and the target domains come from different operation 
conditions [26,27], such as different loads, different operating speeds, or 
different working environments, etc. Due to the different working con-
ditions, the data distributions between the two domains tend to be 
different, which leads to the diagnosis models trained by source-domain 
data are unable to be used in the target domain directly. Condition II: 
Transferring across different machines (TDM) means that the data is 
collected from different but related machines. In this situation, the data 
from different machines may suffer diverse machine specifications, 
structures, measurement environments, working environments, etc.[7]. 
The distribution discrepancy will be more serious or even inconsistent, 
which is due to the difference in machine structures or processing 
methods. Therefore, for this type of distant domain transfer learning, 
models need to possess stronger generalization ability. 

According to the survey[15], transfer learning methods can be 
categorized into four categories: instance-based, feature-based, 
parameter-based, and relation-based methods. In view of the above two 
types of scenarios, it has made some progress in feature-based transfer 
learning currently. Feature-based transfer learning is dedicated to 
finding common latent feature mapping through feature transformation 
i.e., mapping two domains into a sharing feature subspace and use them 
as a bridge to transfer knowledge [28]. Through converting original 

features into new feature representations, the cross-domain discrepancy 
will be reduced and knowledge transfer can be realized. Development of 
deep learning promotes the combination of transfer learning and deep 
learning, and the deep layer model of deep learning is used to auto-
matically learn transferable features from cross-domain data, thereby 
further improving the approach. In the area of fault identification and 
diagnosis of bearings, some researches have appeared by using deep 
transfer learning. Wen et al. [29] combined deep learning and transfer 
learning to conduct fault diagnosis for bearings. The proposed model is 
based on a three-layer sparse auto-encoder (SAE), and MMD between 
source and target features is set as the error term which needs to be 
minimized. The method is validated on the dataset of Case Western 
Reserve University. Li et al. [27] applied a deep distance learning al-
gorithm to solve bearing fault diagnosis in ambient noise and operating 
change states, where the MMD is adopted as the distribution discrep-
ancy. Yang et al. [23] proposed a feature-based transfer neural network 
for bearing fault diagnosis, where multiple-layer MMD is minimized as a 
regularization term and the pseudo label term is attached at the same 
time, to realize the transfer learning from laboratory data set to a real- 
case dataset. Qian et al. [30] proposed a novel distribution discrep-
ancy measuring algorithm called high-order Kullback-Leibler (HKL) 
divergence to construct a three-stage intelligent fault diagnosis model 
and verified it by experiments on a rolling bearing dataset and a gearbox 
dataset. Han et al. [31] established a fault diagnosis model by adopting 
joint distributed adaptation combined with a deep transfer network, 
which was verified on three fault datasets including bearings. Wang 
et al. [32] extracted the low-level features with the modified ResNet-50, 
analyzed the features with the multi-scale feature extractor, and took the 
conditional distribution distance between the source and target domains 
as the constraint condition to realize the intra-class adaptation. Finally, 
the model was verified in the bearing data sets of different working 
loads. Lei et al. [33] proposed a transferable method with adaptive 
manifold probability distribution to deal with bearing fault diagnosis 
under different working conditions, in which the geodesic flow kernel is 
utilized to align the cross-domain data distribution. Zhang et al. [34] 
designed an enhanced transfer joint matching (TJM) approach for cross- 
domain bearing defect diagnosis, combining the maximum variance 
discrepancy with the maximum mean discrepancy for the feature 
matching. 

While a large number of approaches have been proposed for trans-
ferring diagnosis knowledge for bearing components, they still suffer the 
following problems which limit the extensions from the academic 
research to industrial applications:  

1) Most of the studies only focus on the transfer in the identical machine 
(TIM) scenario, where the diagnosis knowledge is transferred across 
different working conditions. Actually, in real-world industrial ap-
plications, labeled data are difficult to be obtained from bearings 
running in complex mechanical systems compared with the labora-
tory bearings. Therefore, the transfer across different machines 
(TDM) is more essential and crucial. Only if the model under TDM 
scenario works well, the diagnosis knowledge could be transferred 
and extended to engineering applications in which labelled data is 
not available.  

2) For the study of fault classification of bearing faults across different 
machines (TDM), the challenge is the larger, more intense, and 
grossly inconsistent distribution discrepancy, where previous ap-
proaches may degenerate greatly with more drastic domain shifts. 
Such a challenge places greater demands on the generalization 
ability and robustness of the model.  

3) The previous studies most consider marginal distribution but neglect 
the effect of joint distribution when calculating distribution dis-
crepancies, leading to the danger of distribution misalignment when 
encountering TDM scenario. Some studies have made exploratory 
work on investigating the joint distribution through merging the 
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marginal and conditional distributions together, but they may still 
lack generalization under different degrees of domain shift. 

In order to solve the aforementioned pending problems and pro-
moting the bearing diagnosis model under cross-machines transfer sce-
nario, this paper proposes JDFA architecture: a joint distribution 
adaptation-based transfer network with diverse feature aggregation 
module for fault diagnosis of bearing across machines. In the proposed 
architecture, diverse feature aggregation (DFA) modules are added to 
the CNN backbone to extract richer hidden layer features, and joint 
distribution adaptation is adopted to reduce the distribution discrepancy 
between the source and target domains to effectively diagnose bearing 
faults across machines. 

The contributions of the proposed method are summarized as 
follows.  

1) A more challenging but more realistic scenario called as transfer 
across different machines (TDM) is set for bearing fault diagnosis, in 
which the training labeled data and testing unlabeled data are ob-
tained from different machines. A novel transfer framework JDFA is 
proposed to tackle the cross-machine scenario bearing fault diag-
nosis issue and is expected to promote the practical applications on 
the intelligent bearing diagnosis for real industrial scenarios.  

2) The diverse feature aggregation (DFA) module is designed and 
cooperated with the CNN structure, which effectively improves the 
capability to extract comprehensive features under different degrees 
of domain shifts.  

3) The joint distribution joint maximum mean discrepancy (JMMD) is 
added into the constraints of model training to diminish the distri-
bution discrepancy between source and target domains 
automatically.  

4) A comprehensive case study of transferring diagnosis knowledge 
across different bearings is designed to evaluate the proposed 
method, and the comparative experimental results prove the supe-
riority of the proposed method on promoting the diagnosis perfor-
mance under TDM scenarios (significantly improving diagnosis 
accuracy to 99.178% on average which is much higher than 
compared state-of-the-art algorithms). Furthermore, the proposed 
work is beneficial to promote the applicability and practicability of 
research about bearing fault diagnosis. 

The rest of this paper is organized as follows. In Section 2, the 
theoretical background is described. In Section 3, the proposed method, 
JDFA is presented in detail. Section 4 conducts the experimental diag-
nosis cases. The discussion and conclusion are drawn in Section 5 and 

Section 6, respectively. 

2. Theoretical background 

2.1. One-dimensional convolutional neural network 

One-dimensional convolutional neural network (1-DCNN) is a CNN 
network, where the input data is one dimensional. 1-DCNN is consists of 
three parts, convolution layers for feature selection, pooling layers for 
down-sampling, and fully connected layers for classification. 1-DCNN 
achieves decent performance in learning high-level feature representa-
tions from dynamic signals and also achieves great results in reducing 
the computational complexity. 

The convolutional layer is essentially a feature extractor with local 
connectivity. Multiple fixed-step kernel filters are used to convolve with 
the one-dimensional inputs, and feature maps are generated after the 
convolutional operation. The output of the j th neuron at the layer l is 
obtained as follow. 

xl
j = f

(
∑Nl− 1

i=1
conv

(
wl− 1

ij , xl− 1
i

)
+ bl

j

)

(1) 

where conv(⋅) is the 1D-convolution operation, wl− 1
ij is the weight of 

the i th neuron at the layer l − 1 , i.e., the parameter of corresponding 
kernel filter, bl

j is the bias of the j th neuron at the layer l , and f(⋅) is an 
activation function, usually using rectified linear unit (ReLU). 

The pooling layer is used to conduct down-sampling, which occurs 
after a convolutional layer. Max pooling and average pooling can reduce 
feature redundancy and prevent overfitting. The difference between 
max pooling and average pooling is that the max-pooling selects the 
maximum value in the region, while the average pooling chooses the 
mean value. Taking max-pooling as an example, the reduced-resolution 
feature map is expressed as follow. 

yl
j = max

(
xl

i

)
, i ∈ Rl

j (2) 

where Rl
j denotes the feature index of the j th pooling region in the l 

th layer and xl
i represents the i th element of the pooling region. 

The fully connected layer acts as a classifier in the convolutional 
neural network, which is similar to the hidden and output layers of a 
standard multi-layer perceptron (MLP). The convolutional layer, pool-
ing layer, and activation function layer map the original data to the 
hidden layer feature space, while the fully connected layer plays the role 
of mapping the learned “distributed feature representation” to the 
sample label space. 

Fig. 1. Fault diagnosis by transfer learning: (a) without transfer learning, (b) with transfer learning.  
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2.2. A brief introduction to domain adaptation 

In the domain adaptation process, a source domain D s = {(xs
i , ys

i )}
ns
i=1 

with ns labeled samples is given, which is devoted as the one that can 
provide some diagnosis knowledge to other task domain, and a target 
domain D t = {(xt

i)}
nt
i=1 with nt unlabeled samples is provided, which is 

served as a task domain that needs to be transferred due to lack of 
diagnostic information and is expected to be correctly classified by using 
the diagnosis knowledge drawn from the source domain. The data 
samples from the source domain and the target domain are subject to the 
marginal probability distribution p and q , respectively. Besides, in order 
to provide enough diagnosis knowledge for the target domain, the label 
space of the source domain is expected to cover that of the target 
domain, i.e., Yt⫅Ys⫅Y , where Ys and Yt are label spaces in the source 
and target domains, respectively. 

The samples in the source and the target domain are collected from 
different types of vibration data, leading to the serious distribution 
discrepancy of these data. Thus the learned features will also be subject 
to the distribution discrepancy if trained under supervised mode. As 
shown in Fig. 1(a), when the classifier h(⋅) is only trained by samples 
from the source domain, then using the classifier h(⋅) to classify the 
target domain sample often leads to misclassification because of the 

serious distribution discrepancy between the features learned from the 
source and the target domain. Therefore, the key point of the domain- 
adaptive method is to reduce the cross-domain discrepancy by extract-
ing transferable features. As shown in Fig. 1(b), when the classifier h(⋅)
can minimize the risk of E

[
h
(
xt

i
)
∕= yt

i
]

by learning transferable features 
with similar distribution, the domain sharing classifier can correctly 
identify the target domain samples by the knowledge provided by the 
source domain. 

2.3. Maximum mean discrepancy 

The main challenge of transfer learning is that there is no or only 
limited labeled sample information in the target domain. To resolve the 
problem, some methods are aiming to combine the source error with the 
discrepancy metric between the source domain and target domain to 
bound distribution discrepancy and to reduce the classification error of 
target domain. The maximum mean discrepancy (MMD) is a commonly 
used distance metric to measure the discrepancy between two domains. 

Define H k as the reproducing kernel Hilbert space (RKHS) with a 
characteristic kernel k and suppose the samples from the source and the 
target domain are subject to the marginal probability distribution p and 
q . The kernel mean embedding of p in H k can be defined as Ep[ϕ(x)] , 

Fig. 2. The overall framework of JDFA.  
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such that 〈Ep[ϕ(x) ], f〉H k
≜Ex p(f(x) ), ∀f ∈ H k , in which ϕ is feature 

mapping. The MMD dk(p, q) between probability distribution p and q is 
defined as the RKHS distance between the kernel embedding of p and q , 
such that [21] 

d2
k (p, q)≜‖Ep[ϕ(xs)] − Eq[ϕ(xt)]‖

2
H k

(3) 

And based on the kernel two-sample test theoretical result [35], p =

q if and only if d2
k(p, q) = 0 , the MMD can be unbiasedly estimated using 

a small batch of samples to overcome the difficulty of acquiring the true 

distribution, so that the unbiased estimator d̂
2
k(p, q) is defined as 

d̂
2
k(p, q) =

1
n2

s

∑ns

i=1

∑ns

j=1
k
(

xs
i , xs

j

)

+
1
n2

t

∑nt

i=1

∑nt

j=1
k
(

xt
i, x

t
j

)

−
2

nsnt

∑ns

i=1

∑nt

j=1
k
(

xs
i , xt

j

)

(4)  

3. Proposed method 

3.1. Overview of the proposed method 

The framework of our proposed JDFA method is shown in Fig. 2, 
which consists of three parts: data preprocessing, feature extraction, 
domain adaptation. JDFA framework receives raw data from two do-
mains: the source domain contains 1-D data set with labeled samples 
which can provide the diagnosis knowledge, and the target domain of 
which samples are unlabeled and need to be identified the health states. 
In the first step, down-sampling, data augmentation, and normalization 
are conducted to preprocess the original 1-D data from the source and 
the target domain. Then the feature extraction, i.e., diverse feature ag-
gregation (DFA) extractor is designed in the second step to extract 
transferable features from samples of source and target domains. Noted 
that the samples from the source and the target domains are 

simultaneously handled by the same feature extractor. The diverse 
feature aggregation extractor is based on the 1D-CNN backbone with 
four hidden layers and consists of four optimization modules, including 
multiple-scale receptive field, Squeeze-and-Excitation Module (SE- 
Module) [36], residual module [37], and channel shuffle[38] operation. 
As for domain adaptation, joint maximum mean discrepancy (JMMD) is 
used to measure the distribution discrepancy of the learned transferable 
features. Then JMMD is added as part of the optimization objective to 
promote backward propagation in the training phase. By minimizing the 
distribution discrepancy of transferable features, features with small 
cross-domain discrepancy are obtained to classify the unlabeled samples 
in the target domain. Since the distribution of learned features from 
target domain can be similar to that in source domain samples by 
domain adaptation, the unlabeled samples in the target domain can be 
correctly classified by the domain-shared classifier. 

3.2. JDFA architecture 

In this section, the components of JDFA architecture including data 
preprocessing, DFA extractor, and domain adaptation with JMMD are 
demonstrated in detail. What’s more, various optimization modules in 
DFA extractor are also presented in this part to explain the effect on final 
fault diagnosis. 

3.2.1. Data augmentation 
When addressing issues such as fault diagnosis and health manage-

ment, it is often difficult to obtain large-scale data due to difficulties in 
data collection. If dealing with fault diagnosis problems using limited 
samples, CNNs tend to suffer overfitting which is the disadvantage for 
fault diagnosis in the TDM scenario. In the field of computer vision, data 
augmentation has been commonly used to increase the number of 
training samples to improve the generalization ability of models, 
including horizontal flipping, random crops/scales, and color jittering 
[39,40]. To overcome this situation in the fault diagnosis field, the data 
augmentation technique on the smaller datasets is proposed to avoid 
overfitting and improve the generalization performance when data is in 
a cyclical stabilization process. 

A random generator is designed to perform fixed-length window 
slicing in a given one-dimensional vibration signal data, which is similar 
to window sliding on the time axis, as shown in Fig. 3. Assuming that the 
length of the given sample is n , and the length of the slice is s , the 
random generator can generate up to n − s+1 samples after slicing when 
n > s . 

3.2.2. Framework of diverse feature aggregation (DFA) extractor 
The backbone of the DFA extractor is one-dimensional domain- 

shared CNN with four hidden layers, which consists of convolutional 
layers, pooling layers, and full connection layers. The network param-
eters for source and target domains are shared. The input of the overall 

Fig. 3. Data augmentation.  

Fig. 4. The framework of the DFA module.  
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network is one-dimensional vibration data with fixed length while the 
output of the overall network is a probability distribution over the 
classes in the dataset. The overall network includes four hidden layers 
with the Rectified Linear Unit (ReLU) as activation function, which is a 
commonly used activation function to solve the problem of gradient 
disappearance. 

The diverse feature aggregation (DFA) modules are added to the 
backbone to improve the stability of the overall framework and the 
accuracy of final classification, including multiple-scale receptive field, 
SE-Module, residual module, and channel shuffle operation. The 
framework of the DFA module is shown in Fig. 4. The specific parameter 
setting of the overall network is shown in Appendix (i.e., Table10). 

3.2.3. Multiple-scale receptive field 
The term receptive field comes from the field of biological vision and 

refers to the area in which neurons respond to stimuli. In CNN’s, the 
receptive field is defined as the size of pixels on the feature map corre-
sponding to the area of the original image, that is, the area of the 
affected input space in the feature. 

The receptive field in CNN architecture is related to the size of the 
convolution kernel. A larger convolution kernel means a larger receptive 
field and neural network is more inclined to obtain the global infor-
mation of input signal. On the contrary, a smaller convolution kernel, i. 
e., a smaller receptive field represents that more local details tend to be 
obtained by the neural network. Generally speaking, one-dimensional 
vibration data usually contains information with diverse feature 
scales. Due to the uncertainty of feature scales of input vibration signal 
and feature maps generated from deeper layers, using convolution 
kernel with single scale cannot guarantee either global feature coverage 
or effective extraction for local details, especially when dealing with 
complex and variable signal data. Considering inappropriate feature 
extraction will lead to degradation in final fault classification, multi- 
scale convolutional kernels representing multiple receptive fields are 
used for feature extraction when constructing the model, which allows 
the network to obtain features at multiple scales. The process can be 
formalized as follows: 

convi = concat
(
convi1(3×1)(input), convi2(5×1)(input), convi3(7×1)( input )

)

(3 × 1), (5 × 1) and (7 × 1)

3.2.4. Squeeze-and-Excitation module (SE-Module) 
The number of feature channels will increase with hidden layers 

becoming deeper especially when multiple-scale receptive field mech-
anism is attached. More channels will contain richer features combina-
tion. However, features in different channels will have diverse 
importance, i.e., diverse degrees of contribution to final fault diagnosis. 
Therefore, different weights should be assigned to each feature channel 
instead of adopting uniform channel weights. 

The SE-Module [36] possesses the ability to learn the weights of 
individual channels during the training phase. SE-Module contains two 
branches including one branch for SE operation and another branch for 
transmitting the original signal. SE operation contains a series of com-
putations such as 1D-global pooling (transforming the features into the 
form of 1 × C , C is the number of feature channels), fully connection, 
and non-linear activation functions to output weights of channels. After 
SE operation, input features are transformed into the weight vector of 
1 × C and the weighted features can be represented as follows: 

Fscale(uc ,sc) = sc⋅uc (6) 

where sc represents the original feature map and uc represents the 
learned channel weight vector. 

3.2.5. Residual learning 
Outputs obtained from different hidden layers represent features of 

different levels. For example, outputs from shallow layers usually 

represent local features or detailed features while deep hidden layers 
tend to extract semantic features or abstract features. Shallow features 
and semantic features will both have an influence on final fault recog-
nition from the local perspective and global perspective respectively. 
However, features obtained from shallow layers may be submerged 
among all features, and the impact of shallow features will disappear 
gradually. On the contrary, semantic features from deep layers will 
occupy more importance in the following classification process. This 
phenomenon may have a negative effect on following fault classifica-
tion. Moreover, the overall network has the probability to experience 
network degeneration and gradient vanishment or gradient explosion 
with the number of network layers increasing. 

To overcome the problems mentioned above, the residual module 
[37] is used in the DFA extractor. By adding the residual network 
structure, features from shallow layers will flow to deeper layers directly 
and be fused with semantic features simply. Thereby, hierarchical fea-
tures can be preserved and corresponding problems can be avoided to 
some degree. The output of the residual module can be represented as 
follow, 

y = conv+Fscale(uc ,sc) (7) 

where conv represents the features from shallow layers after 
multiple-scale receptive field, Fscale(uc ,sc) represents the output undergo-
ing the SE-Module. 

3.2.6. Channel shuffle 
In the TDM scenario, the diagnosis model needs to possess enough 

generalization ability to tackle challenges caused by the greatly varying 
distribution of data. Except for optimization operations presented 
above, channel shuffle operation is adopted in the JDFA framework to 
make the overall network stable and have sufficient generalization 
ability. In detail, feature channels obtained from multiple-scale recep-
tive field module are divided into three groups equally. Then the feature 
matrix is reshaped, transposed, and reshaped again to conduct channel 
shuffle operation. With the order of origin feature channel disturbed in 
training phase, the JDFA framework can achieve more stable perfor-
mance in the TDM scenario. 

3.2.7. Joint distribution adaptation 
Recent deep transfer learning mines more transferable features of 

deep networks through domain adaptation to matches the marginal 
distributions across domains. The MMD between the source and target 
domains has always been focused on many transfer learning tasks. 
However, the limitation of the MMD is that it only focuses on marginal 
distributions across domains, assuming the conditional distribution of 
the two domains are approximately equal, that is Ps(ys

⃒
⃒xs) ≈ Pt(yt

⃒
⃒xt) . In 

practice, as the depth of the network increases, the joint distribution 
between the input features and the output labels causes more changes, 
subsequently leading to the greater cross-domain discrepancy and less 
transferability of features. Therefore, the joint distributions instead of 
marginal distributions of the source and target domains are used to 
narrow the discrepancy between them, so as to achieve greatly improved 
generalization performance and robustness of models. Instead of 
considering marginal distributions and conditional distributions sepa-
rately or fusing simply, JMMD is adopted in JDFA architecture for 
domain adaptation. 

The core of JMMD is the joint embedding of two or more variables, 
which is extended by kernel embeddings[41]. The joint embeddings can 
be viewed as the cross-covariance operator CX1:m by the standard 
equivalence between tensor and linear map [41]. CX1:m is computed as 

CX1:m (P)≜EX1:m
[
⊗m

l =1ϕl
(
Xl
)]

=

∫

×m
l =1Ωl

(
⊗m

l =1ϕl
(
xl
))

dP
(
x1,⋯, xm) (8) 

in which X1:m is a set of variables {X1,⋯,Xm} on the domain 
×m

l =1Ωl = Ω1 × ⋯ × Ωm , ϕl is the feature map endowed with kernel kl 
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in reproducing kernel Hilbert space (RKHS) H
l for variable Xl , 

⊗m
l =1ϕl (xl ) = ϕ1(x1) ⊗ ⋯ ⊗ ϕm(xm) , where the inner product sat-

isfies
〈
⊗m

ℓ=1ϕℓ(xℓ),⊗m
ℓ=1ϕℓ(x’ℓ)

〉
=
∏m

ℓ=1

kℓ(xℓ, x’ℓ). When given a set of 

functions f1,⋯, fm , the joint embedding can be computed as 

EX1:m

[
∏m

ℓ=1

fℓ(Xℓ)

]

=
〈
⊗m

ℓ=1fℓ,CX1:m
〉

(9) 

As with the unbiased estimation of kernel embedding, the finite 
sample can be used to estimate joint embedding when the true distri-
bution is unknown [42]. The empirical joint embedding can be esti-
mated as 

ĈX1:m =
1
n

∑n

i=1
⊗m

l =1ϕl
(
xl

i

)
(10) 

Due to the shifts in the joint distribution present in the activation of 
higher network levels [1], joint distributions of the activations in the 
fully connected layers L = {fc1, fc2}, i.e. P(Zs1, ...,Zs|L |) and Q(Zt1, ...,

Zt|L |) , can be used to surrogate the original joint distribution P(Xs,Ys)

and Q(Xt ,Yt) , respectively. 
By using the advantage of MMD, the Hilbert space kernel embedding 

of the joint distribution can be used to measure the discrepancy of two 

joint distributions of the activations in layers L . As a result, JMMD can 
be obtained, which is defined as 

DL (P,Q)≜‖CZs,1:|L | (P) − CZt,1:|L | (Q)‖
2
⊗
|L |

l =1H l (11) 

With the linear unbiased estimation of JMMD, JMMD can be esti-
mated with a small batch of samples. Based on the virtue of the kernel 
two-sample test theory [35], the P(Zs1, ...,Zs|L |) = Q(Zt1, ...,Zt|L |) if an 
only if DL (P,Q) = 0 . The empirical estimate of DL (P,Q) is computed as 
the squared distance between the empirical kernel mean embeddings as 

D̂L (P,Q) =
1
n2

s

∑ns

i=1

∑ns

j=1

∏

l ∈L
kl
(

zsl
i , zsl

j

)

+
1
n2

t

∑nt

i=1

∑nt

j=1

∏

l ∈L
kl
(

ztl
i , ztl

j

)

−
2

nsnt

∑ns

i=1

∑nt

j=1

∏

l ∈L
kl
(

zsl
i , ztl

j

)

(12) 

in which ns is the number of the labeled points from the source 
domain, nt is the number of unlabeled points from the target domain, zsl 

and ztl are activations in the layer l from source and target domains, 
respectively. 

It is noted that JMMD uses the product of kernels in each layer to 

Fig. 5. Flowchart of the training process.  
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express the interaction of different variables in the joint distributions. 
And each kernel k(zs, zt) = 〈ϕ(zs),ϕ(zt) 〉 can be defined as the combi-
nation of m kernels {ku} [21], 

K ≜

{

k =
∑m

u=1
βuku :

∑m

u=1
βu = 1, βuâ©¾0,∀u

}

(13) 

where the βu is the constraints on coefficients, which can be used to 

guarantee the generated multiple kernels k is characteristic. The multi- 
kernel k can use different kernels to enhance the MK-MMD test, which 
gives a principled method for optimal kernel selection [21]. 

3.3. Training process 

After feature extraction from the source domain and target domain, 
the JMMD is supposed to be added to the loss function of CNN for 
backward adjusting. Suppose the empirical risk of CNN on the source 
domain is 

LE = min
Θ

1
ns

∑ns

i=1
J
(
θ
(
xs

i

)
, ys

i

)
(14) 

where J is the cross-entropy loss function, θ
(
xs

i
)

is CNN classifier that 

assigns xs
i to label ys

i , Θ =
{

wl , bl
}l

l =1 
is the set of all CNN parameters. 

Since the parameters cannot be directly transferred to the target domain, 
and the distribution of the source and the target domain are required to 
become similar under the hidden representations of fully connected 
layers, the JMMD based discrimination error LD is added to the CNN risk 
to create a new optimization goal L . The optimizing objective L is given 
by 

L = LE + LD + LR

= min
Θ

1
ns

∑ns

i=1
J
(
θ
(
xs

i

)
, ys

i

)
+ λD̂L (P,Q) + α⋅

∑Nw

j=1
w2

j

(15) 

where λ > 0 is the penalty parameter, and D̂L (P,Q) is the JMMD 
between the source and the target domain on the special layers L as 
shown in Eq. (12). We set L = {fc1, fc2} for the proposed model. α is the 
trade-off parameter, 

∑Nw
j=1w2

j is the L2 regularization term [43] of CNN 
which is attached to enhance the generalization ability of the network, 
Nw is the total number of CNN weights, w is the weight of CNN. 

The Eq. (15) is used as a loss function for the model and the loss is 
propagated back from the output layer to the hidden layer until it 
propagates to the input layer. The values of parameters are adjusted 
during backpropagation until the overall network achieves convergence. 
And the optimization algorithm RMSProp [44] is used to update the 
parameters. 

The specific training process is presented in Fig. 5. In the step of data 
preprocessing, the datasets are down-sampled, augmented, and 
normalized in order from the source and target samples. In the step of 
feature extraction, the deep transferable features of source and target 
data are extracted through forward propagation, respectively. In the 
step of domain adaptation, the JMMD between source and target 
transferable features is calculated by Eq. (12). And then the optimizing 
objectives are calculated by Eq. (15) to enforce constraints on CNN 
parameters. RMSProp is used to update the parameter sets. When the 
training phase is over, the model can output the diagnosis results to 
classify the samples in the target domain. 

3.4. Overall experimental implementation 

In this subsection, in order to detail the overall implementation of 
the proposed method, the training and testing process of JDFA is illus-
trated in Table 1. 

4. Case study: Transfer learning from CWRU bearings to 
Paderborn bearings 

4.1. Introduction to datasets 

In this section, the validity of the proposed model is demonstrated 
through the experimental validation of two datasets from different 
machines. In the case study, we try to use diagnostic information from 

Table 1 
Training and testing process of the proposed method.  

Input: Source domain samples {xs
i , ys

i }
ns
i=1 and target domain samples {xt

i}
nt
i=1 after data 

preprocessing, the batch size M , the tradeoff parameter λ , α , the learning rate η , the 
iteration number N  

Output: Diagnostic results {yt
i}

nt
i=1  

1. Randomly initialize trainable parameters θ in the network.  

2. While the parameters θ do not converge or the training epoch n does not reach 
N do  

3. Select a batch of samples from the source domain and target domain 
respectively 

4. Extract hierarchical features zs and zt through forward-propagation  
5. Classify inputting samples {xs

i }
M
i=1 based on extracted features  

6. Calculate loss function L← Cross-entropy + JMMD loss + L2 regularization 
term  

7. Calculate gradient gθ base on loss value L  
8. Update parameters θ←θ+η⋅gθ using RMSProp optimizer in backward- 

propagation  
9. Add training epoch n←n + 1  
10. If n reaches N and parameters θ do not converge  
11. Reset training epoch n and go to step 2  
12. Else if n reaches N  
13. Return network parameters θ  

14. Conduct testing process with target domain samples {xt
i}

nt
i=1  

15. Return the diagnostic results {yt
i}

nt
i=1   

Fig. 6. The test rig of the CWRU bearing dataset, consisting of a 2 HP motor, a 
torque sensor, a power meter, and a motor control system [45]. 

Table 2 
Introduction to datasets.  

Datasets Data sources Operation Conditions Damage Method 

CWRU-DE-1 CWRU(DE) 0HP(1797 r/min) EDM 
CWRU-DE-2 CWRU(DE) 3HP(1730 r/min) EDM 
CWRU-FE-1 CWRU(FE) 0HP(1797 r/min) EDM 
CWRU-FE-2 CWRU(FE) 3HP(1730 r/min) EDM 
PDB-EDM Paderborn 1500 rpm EDM 
PDB-EG Paderborn 1500 rpm manual electric engraver 
PDB-ALT Paderborn 1500 rpm accelerated lifetime test  

S. Jia et al.                                                                                                                                                                                                                                       



Measurement 187 (2022) 110332

9

one motor bearing to diagnose the health information of another 
bearing, which was completely inconsistent with the working condition 
provided with the diagnostic information previously. These two datasets 
are detailed below. 

The first data set is a motor bearing data set from Case Western 
Reserve University (CWRU) [45]. The data acquisition system consists of 
a 2 HP motor, a torque sensor, a power meter, and a motor control 
system, as shown in Fig. 6 [45]. The vibration data are collected by an 
accelerometer and the experimental bearings are SKF bearings. In the 
experiment, Electrical discharge machining (EDM) is used to simulate 
the single point failure of bearings, which include four health states: 
normal state (N), inner race fault (IF), outer race fault (OF), and roller 
fault (RF), and only N, IF, and OF are selected as case samples. The fault 
diameter of selected samples is 0.007 in.. As shown in Table 2, the 
sampling frequency is set to 12 kHz, and vibration data is collected with 
the motor load of 0HP (the motor speed of approximately 1797 r/min) 
and 3HP (motor speed of approximately 1730 r/min). The datasets 
CWRU-DE-1 (0HP) and CWRU-DE-2 (3HP) are acquired by the sensor at 
the drive end (DE), and the datasets CWRU-FE-1 (0HP) and CWRU-FE-2 
(3HP) are captured by the sensor at the fan end (FE). The number of the 

sample is increased by the data augmentation described in Chapter 
3.2.1, so that 3000 samples are collected in each of the four data sets, 
with 1000 samples for the normal state (N), 1000 samples for inner race 
fault (IF), and 1000 samples for outer race fault (OF). And each sample 
has 1,200 sampling points. 

The second dataset is from the University of Paderborn, Germany 
[46]. The test rig consists of an electric motor, a torque measuring shaft, 
a rolling bearing test module, a flywheel, and a load motor, as shown in 
Fig. 7 [46]. The motor is operated by an inverter with a 16 kHz switching 
frequency, which can provide similar conditions in the industry. This 
dataset is sampled at 64 kHz and includes 6 healthy bearings, 12 bear-
ings with artificial damage, and 14 bearings with damages from accel-
erated lifetime tests. And the dataset includes three health states: normal 
(N), outer race fault (OF), and inner race fault (IF). In this study, two sets 
of artificial damaged data are selected: the dataset for failures caused by 
EDM is recorded as dataset PDB-EDM, the dataset for failures caused by 
manual electric engraving is recorded as dataset PDB-EG. EDM is in the 
same mode as the damage in the CWRU dataset. The damage caused by 
manual electric engraving has an irregular surface structure and a 
deeper depth, similar to real pitting damage, and better simulates real 
working conditions. A dataset of accelerated lifetime tests is selected as 
the dataset PDB-ALT to validate the diagnostic effect of transfer learning 
on real working conditions. The samples are also increased by the data 
augmentation so that 3300 samples are collected for each damage mode, 
with 1100 samples from each health states (N, IF, OF). 3300 samples are 
split at a ratio of 10:1 for training and testing. Each sample has 6000 
sampling points. The details are shown in Table 3. 

According to Table 2, four datasets from the CWRU dataset are used 
as source domain samples to provide diagnosis knowledge and three 
datasets from the Paderborn (PDB) dataset are used as target domain 
samples. As shown in Table 4, 12 sets of transfer learning tasks are 
constructed to classify the samples in the datasets PDB. 

Since the sampling frequency of the CWRU data set is not the same as 
that of the PDB data set, the samples of the PDB data set are down- 
sampled to 1200, as same as that in CWRU data set. 

4.2. Performance evaluation and comparison analysis 

4.2.1. Comparison methods 
The proposed framework will be compared with several state-of-the- 

art methods used in the field of fault diagnosis:  

• CNN 

CNN is the baseline method, and as a classic framework for deep 
learning, it does not take any transfer operations. CNN has the same 
architecture as the backbone in JDFA, which means that the baseline 
method contains the DFA module with the same structure as JDFA.  

• TCA 

Fig. 7. The test rig of the Paderborn bearing dataset, consisting of (1) an electric motor, (2) a torque measuring shaft, (3) a rolling bearing test module, (4) a 
flywheel, (5) a load motor [46]. 

Table 3 
Description of the three health states in each dataset.  

Datasets Health 
state 

Class 
label 

Number of 
samples 

Number ofsample 
points 

CWRU Normal 0 1000 1200 
Inner race 1 1000 1200 
Outer race 2 1000 1200 

PDB Normal 0 1000 + 100(test) 6000 
Inner race 1 1000 + 100(test) 6000 
Outer race 2 1000 + 100(test) 6000  

Table 4 
Transfer Task.  

Task Name Source Data Target Data 

C1  CWRU-DE-1 PDB-EDM 
C2  CWRU-DE-2 PDB-EDM 
C3  CWRU-FE-1 PDB-EDM 
C4  CWRU-FE-2 PDB-EDM 
C5  CWRU-DE-1 PDB-EG 
C6  CWRU-DE-2 PDB-EG 
C7  CWRU-FE-1 PDB-EG 
C8  CWRU-FE-2 PDB-EG 
C9  CWRU-DE-1 PDB-ALT 
C10  CWRU-DE-2 PDB-ALT 
C11  CWRU-FE-1 PDB-ALT 
C12  CWRU-FE-2 PDB-ALT  
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TCA[19] is a shallow transfer learning method, which needs to 
extract statistical features from the raw data, then conduct unsupervised 
domain adaptive, and finally, make the diagnosis decision by the clas-
sifier. It reduces the distribution discrepancy between the source and 
target domains by marginal distribution adaption.  

• DDC 

DDC[47] is a deep transfer learning method, in which CNN is the 
backbone to extract features automatically and domain adaptation with 
discrepancy constraint is applied in the fully connected layers. The 
discrepancy constraint is constructed in previous layers of the classifier 
using MMD metric as one term in the network loss function.  

• DAN 

DAN[21] is similar to DDC and extends DDC. Instead of adding only 
one adaptive layer to the DDC method, DAN adds more adaptive layers 
simultaneously. Meanwhile, DAN uses a multi-kernel MMD metric (MK- 
MMD) with better characterization capability instead of the single- 
kernel MMD of the DDC method.  

• JDA 

JDA[20] is also a shallow transfer learning method, but compared to 
TCA it focuses on adapting both the marginal distribution and the 
conditional distribution, which means that the word joint in JDA does 
not refer to the direct adaptation of the joint distribution. 

4.2.2. Metrics 
Three metrics are devoted to evaluating the proposed model 

compared with other models, average accuracy, transfer loss, and 
transfer ratio [48].  

• Average accuracy 

The average accuracy is the mean value of testing accuracy in ten 

trials, referring to the accuracy measure between the predicted results 
and the actual labels for the unlabeled testing samples.  

• Transfer loss (TL) 

Before defining transfer loss and transfer ratio, the transfer error e(S,
T) is devoted to representing the test error obtained by conducting the 
training phase on the source domain S and running the testing phase on 
the target domain T. And the baseline in-domain error eb(T,T) repre-
sents the testing error obtained by a baseline model trained and test on 
the target domain T. Therefore, transfer loss TL for source domain S and 
target domain T is defined as the difference between the transfer error 
and the baseline in-domain error, i.e. 

TL(S, T) = e(S, T) − eb(T,T). (16) 

When the transfer loss is smaller, the model is considered to have a 
better performance.  

• Transfer ratio (TR) 

Transfer ratio TR is defined by 

TR =
1

m × n
×
∑n

j=1

[
∑m

i=1

[
1 − e

(
Si,Tj

) ]

[
1 − eb

(
Tj,Tj

) ]

]

(17) 

which represents the overall transfer performance on m × n transfer 
learning tasks [23]. Contrary to transfer loss, the larger transfer ratio 
represents better transfer performance. 

4.2.3. Results and performance analysis 
In model comparison experiments, the baseline model is with CNN 

only. The average testing accuracies of contrastive methods are shown in 
Table 5. The testing accuracy of the proposed method on each task is 
over 98%, the average accuracy of all tasks reaches 99.178%, which is 
superior to all comparison methods. Besides, the proposed method can 
achieve relatively steady and excellent transfer accuracy for the transfer 
task under different conditions. The accuracies of the baseline method 
CNN are around 60%, which means basic CNN without distribution 
discrepancy constraint can hardly realize the fault identification of 
complex transfer tasks. It means that only utilizing basic CNN to extract 
features is not sufficient to deal with serious distribution discrepancy 
between source domain and target domain. The results from TCA and 
JDA are just as bad (about 45% on average testing accuracy), proving 
that the shallow transfer learning methods are not advantageous in these 
complex transfer tasks. These shallow transfer learning methods use 
simple non-linear mappings to extract features, which makes them 
difficult to fit complex and serious distributions. When dealing with 
more drastic domain shifts like transfer across different machines (TDM) 
scenarios, these methods have difficulty extracting powerful and rich 
features to narrow the distribution discrepancy and result in insufficient 
error correction between the source and target domains. As a result, they 
deliver poor results on the target domain. Relatively speaking, DDC and 
DAN, which are based on deep transfer learning, perform well in terms 
of accuracy, transfer loss, and transfer ratio. The accuracies reach about 
70% on tasks 1–8 and about 90% on tasks 8–12, which is since deep 
neural network have certain capability to extract hierarchical features 
from vibration data and MMD can achieve the goal of narrowing the 
distribution discrepancies between the source and target domains, to 
improve the effectiveness of transfer learning. However, their results are 
still inferior to our proposed model, because MMD only considers the 
marginal distribution but does not joint distribution. MMD is not suffi-
cient and appropriate enough to measure distribution discrepancy 
accurately for complex TDM scenario. Besides, DDC and DAN make use 
of basic CNN architecture without optimized operations to extract fea-
tures that is not adequate to extract advantaged features for fault diag-
nosis under TDM scenarios. On the aspect of the average accuracy of all 

Table 5 
Average testing accuracies (%) of different methods for transfer learning tasks.  

Task 
Name 

Baseline 
(CNN) 

TCA 
[19] 

DDC 
[47] 

DAN 
[21] 

JDA 
[20] 

Proposed 
method 

C1   55.733  54.54  66.233  66.8  63.032  98.615 
C2   64.4  45.228  75.134  68.633  43.033  98.284 
C3   68.034  63.652  70.867  73.301  65.168  99.834 
C4   61.801  56.792  65.2  78.899  56.433  99.850 
C5   64.33  35.75  68.301  77.534  35.964  98.753 
C6   49.631  35.202  63.301  75.132  36.343  98.732 
C7   63.733  41.522  71.401  78.035  35.087  98.635 
C8   67.932  39.847  75.701  76.167  43.577  98.448 
C9   68.034  32.056  85.2  84.299  31.093  99.884 
C10   76.532  42.219  84.768  88.933  46.597  99.800 
C11   66.433  40.969  83.7  82.3  50.619  99.649 
C12   65.67  34.027  84.034  87.132  35.15  99.652 
Average  64.355  43.484  74.487  78.097  45.175  99.178  

Table 6 
Baseline in-domain error of datasets PDB-EDM, PDB-EG, 
and PDB-ALT.  

Target domain datasets eb(T,T)

PDB-EDM  0.132% 
PDB-EG  1.301% 
PDB-ALT  0.099%  
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tasks, DDC is 74.487% and DAN is 78.097%, where the difference is not 
obvious, proving that in these transfer tasks, the adaptation with multi- 
layer MDD in the full connection layers does not show a significant 
improvement over that with single-layer MMD. 

The datasets PDB-EDM, PDB-EG, and PDB-ALT are used to calculate 
the baseline in-domain errors, which are shown in Table 6. 

With the result of the baseline in-domain errors shown in Table 6, the 
transfer loss and transfer ratio are calculated in Table 7 (calculated by 
Eq. (17)) and Table 8 (calculated by Eq. (18)), which show consistent 
conclusions with the average accuracy. The average transfer loss of the 
proposed JDFA is only 0.367, which is lower than the value of any other 
method (CNN is 35.189, TCA is 56.061, JDA is 53.304, DDC is 25.058 
and DAN is 21.448), indicating that JDFA has a smaller inter-domain 
transfer error when tackling distribution discrepancy in TDM scenario. 

Furthermore, the transfer ratio shown in Table 8 is 0.9963, which is 
upper than the others, showing that JDFA performs higher transfer ef-
ficiency for all transfer tasks. The excellent performance on both transfer 
loss and transfer ratio proves that JDFA also shows superior results in 
terms of transfer effects compared to other comparison methods. The 
improvement of transfer effects in view of transfer loss and transfer ratio 
mainly benefits from the capability of DFA module for feature extraction 
and aggregation, and JMMD constraint for evaluating distribution 
discrepancy during transfer network training. The results of the com-
parison methods in transfer loss and transfer ratio are also consistent 
with the accuracy demonstrated. 

In order to present a more visualized performance comparison, 
experimental results are illustrated in Fig. 8 in the meantime. As shown 
in Fig. 8 (a-c), the proposed method JDFA shows absolute advantages in 
three metrics (accuracy, TL, and TR) compared with other transfer 
learning algorithms. 

The experimental results show that the proposed model JDFA has 
superior diagnostic accuracy and transfer effects than other comparative 
models, which is due to its powerful feature extraction module DFA and 
narrowing the domain distribution discrepancy by joint distribution 
adaptation. Compared to the proposed JDFA, CNN ignores the distri-
bution discrepancy of the training and testing sets, TCA and JDA have 
difficulty extracting powerful and rich features for solving the problem 
of large differences in feature space, DDC and DAN also struggle to 

achieve good diagnostic results when faced with problems that vary 
more widely in distribution. Nevertheless, there is still room for 
improvement in the proposed model, for example, the performance on 
certain tasks and the stability of different tasks could be improved. 

4.2.4. Feature visualization 
For visualization, t-distributed stochastic neighbor embedding (t- 

SNE) [49] is introduced to understand the effects of transfer learning 
intuitively. T-SNE is used to reduce the dimension of data so that the 
distribution of the features can be visually displayed on a two- 
dimensional plane. Taking task 1 for example, the learned features 
from the source and the target domain are shown in Fig. 9(a-f) via t-SNE, 
which are obtained by CNN(a), TCA(b), DDC(c), DAN(d), JDA(e) and 
JDFA(f) respectively. 

Through Fig. 9(a-f), the transfer effectiveness of each model can be 
more intuitively demonstrated. From Fig. 9(a), when the samples from 
the source domain can be classified, the features obtained by CNN 
training show large distribution discrepancies between the source 
domain and target domain. Thus, CNN is difficult to classify the samples 
from the target domain through the classifier trained with source 
domain samples. From Fig. 9 (b) and Fig. 9 (e), the features obtained by 
TCA and JDA training exhibit very poor distributions, and it is difficult 
to realize the distinction between different categories. Nevertheless, 
JDA also demonstrates an advantage over TCA in that the source domain 
features obtained by JDA can be separated but those obtained by TCA 
cannot be. From Fig. 9(c-d), DDC and DAN have the same problem as 
CNN, even though the categories of the source samples are well sepa-
rated, the distances between the categories of the target domain samples 
are too small to classify the target samples correctly. However, DDC and 
DAN conduct layer distribution adaptation through MMD to narrow the 
distribution discrepancies between the source domain and target 
domain. Thus, DDC and DAN can achieve a better classification effect for 
samples in the target domain than CNN. Fig. 9(f) shows that the pro-
posed method JDFA achieves excellent transfer results, and not only the 
samples with different labels are well separated, but also the samples 
from different domains are well-matched in distribution. 

4.3. Sensitivity analysis 

4.3.1. Parameter sensitivity 
In the proposed model, the trade-off parameters λ will have a serious 

impact on the performance of the transfer model. Thus, the impact of 
trade-off parameters λ is investigated. In our study, the parameter λ is 
calculated by 

λ =
2

(1 + e− γ(i/iteration) )
− 1 (18) 

then λ is set by searching γ ∈ {10,1, 10− 1,10− 2,10− 3,10− 4, 10− 5} . 
Another important hyper-parameter is the trade-off parameter α of 

the L2 regularization term. The L2 regularization term is attached to the 
overall loss function for optimization by limiting the neural network to 
learn the high-frequency component and preferring a low-frequency 
smooth function to alleviate overfitting. α is searched from {10− 9,10− 10,

10− 11,10− 12} . 
Task 1 and Task 5 are chosen as examples to show the transfer per-

formance of the proposed model as γ and α change. The mean values of 
testing accuracy in ten trials on Task1 and Task 5 are presented in 
Fig. 10, and the darkest color are shown in red circles, which corre-
sponds to the highest accuracy. Through experimental verification, it 
can be observed that changes in parameters do have an impact on test 
performance, and the proposed method achieves the highest average 
accuracy when γ and α are set as 0.1 and 1 × 10− 10 respectively. 

4.3.2. Condition sensitivity 
In this section, the influence of the different working conditions on 

Table 7 
Transfer loss (TL) of different methods for transfer learning tasks.  

Task 
Name 

Baseline 
(CNN) 

TCA 
[19] 

DDC 
[47] 

DAN 
[21] 

JDA 
[20] 

Proposed 
method 

C1   44.135  45.328  33.635  33.068  36.836  1.253 
C2   35.468  54.64  24.734  31.235  56.835  1.584 
C3   31.834  36.216  29.001  26.567  34.7  0.034 
C4   38.067  43.076  34.668  20.969  43.435  0.018 
C5   34.535  63.115  30.564  21.331  62.901  0.112 
C6   49.234  63.663  35.564  23.733  62.522  0.133 
C7   35.132  57.343  27.464  20.83  63.778  0.230 
C8   30.933  59.018  23.164  22.698  55.288  0.417 
C9   31.867  67.845  14.701  15.602  68.808  0.017 
C10   23.369  57.682  15.133  10.968  53.304  0.101 
C11   33.468  58.932  16.201  17.601  49.282  0.252 
C12   34.231  65.874  15.867  12.769  64.751  0.249 
Average  35.189  56.061  25.058  21.448  54.37  0.367  

Table 8 
Transfer ratio (TR) of different methods.  

Methods Baseline 
(CNN) 

TCA 
[19] 

DDC 
[47] 

DAN 
[21] 

JDA 
[20] 

Proposed 
method 

Transfer 
ratio 
(TR)  

0.6551  0.4243  0.7956  0.8081  0.4536  0.9963  
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diagnostic performance is investigated. Fig. 11 presents the testing ac-
curacy of the proposed method under various working conditions. It can 
be observed that in 12 tasks, the testing accuracy rate is more than 98%, 
which means that the model can achieve stable and excellent results 
under complex working conditions. That validates the robustness of the 
proposed model. Meanwhile, we also find that transfer performance is 
stable overall with local fluctuation appearing. More detailed analyses 
are shown as follows:  

1) For tasks where the source domains are only from different operating 
conditions, such as Task 1&2 or 3&4, there is no great difference in 
testing accuracy between them, which means that changes in oper-
ating conditions do not have a significant effect on the transfer 
performance.  

2) For tasks where the target domain is from a different damage mode, 
for example in the comparison of Tasks 5&6&7&8 and with Tasks 
9&10&11&12, will show greater differences in transfer perfor-
mance, implying that it will be easier to exist fluctuation in transfer 
effects across datasets when there is serious inconsistency in the 
distribution discrepancy in the datasets. 

4.4. Ablation analysis 

In section 3 mentioned above, the proposed JDFA architecture with 
four modules attached to the CNN-based backbone, including multiple- 
scale receptive field module, residual module, SE-Module, and channel 
shuffle [38] module is proposed to achieve optimal performance. To 
validate the effectiveness of each module, ablation analyses are 

(a) 

(b) 

(c) 

Fig. 8. (a) Testing accuracy, (b) transfer loss, (c) transfer ratio of the proposed method compared with the comparison methods on tasks 1–12.  
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conducted to compare JDFA with the variants in Table 9. The visualized 
comparison results are shown in Fig. 12. 

As shown in Table 9, S1 refers to the baseline method, which uses 
CNN only with JMMD. S6 refers to the proposed model JDFA, which 
adds multiple-scale feature extractor, residual module, SE-module and, 
channel shuffle module on the baseline model. S2 to S5 represent models 
without multiple-scale feature extractor, residual module, SE-module 
and, channel shuffle module respectively. The prediction accuracy is 
calculated on each task with several experiments and obtain the mean 
value of each experiment as the metric to facilitate comparison. Mean-
while, TR is also calculated as an important evaluation metric. 

Through the analysis of results in Table 9, the method S6 is proved to 
have almost 100% prediction accuracy and the highest TR value. That is, 
the proposed JDFA architecture with four optimized operations added to 
the CNN backbone can achieve the best performance, which means that 
combining the four optimized operations makes an essential contribu-
tion to the fault diagnosis problem. In contrast, average prediction ac-
curacy and TR value of the method S1 only with CNN backbone are far 

lower than the method S6 , especially in the tasks C1 , C5 , C7 , C8 . 
Therefore, it can be inferred that basic CNN architecture does not 
possess enough ability to extract features and make classification under 
complex tasks. What’s more, it can be found that methods with one 
optimized operation ablated may perform even worse than basic CNN 
network under certain tasks through analyzing S2 - S5 . For example, the 
method S2 which does not contain multiple-scale feature extractor 
achieves low prediction accuracy less than 80% under tasks C4 and C5 . 
Results of tasks C1 , C2 , C3 , C4 , C8 of the method S3 without residual 
module are much less than satisfactory. The method S4 ablating SE- 
Module cannot perform well especially under the tasks C1 and C8 , of 
which accuracy is lower than 80%. Analyses are conducted for the above 
situations and corresponding reasons are listed as follows: 

Firstly, when the multiple-scale feature extractor module is removed 
from the overall architecture, the single-scale CNN filter may be inap-
propriate for extracting features in original data and the number of 
output feature channels after each layer becomes much less than a 
complete neural network. That is, fewer types of output features are 
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Fig. 9. The visualization of the learned features on the target domain and the source domain on task 1: (a) CNN, (b) TCA, (c) DDC, (d) DAN, (e) JDA, (f) JDFA (the 
proposed method). 
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provided to the following network layers. In this condition, adding SE- 
Module to learn channel weights and residual module to fuse features 
obtained from different layers may cause high weights allocation for 
inappropriate features and wrong feature fusions under some tasks. 

Secondly, when the residual module is ablated from the framework 
proposed, outputs of shallow layers representing local and detailed 
features and deep layers representing abstract and semantic features 
have no opportunity to be fused. Therefore, features from shallow layers 
may be submerged and abstract features obtained from deep layers will 
dominate the following prediction process. Furthermore, only adding 
multiple-scale feature extractor and SE-Module will increase the number 
of network layers, causing gradient vanishment and network degener-
ation when training neural network under some tasks. Thirdly, when 
adopting multiple-scale feature extractor, residual module, channel 
shuffle module and reject SE-Module from the overall architecture, 
output channels per network layer will be attached to the same impor-
tance even if output channels contain complex and diverse features. It is 
obvious that various features in different channels have varying degrees 
of impact on final prediction results, especially when lots of channels 
exist after multiple-scale feature extractor. Lack of weights for each 
channel will make channel features with different importance be treated 
equally, which may fade useful features and emphasize useless features. 
For the reasons mentioned above, the method S4 predicts with low ac-
curacy under tasks C1 and C8 . Finally, the method S5 with channel 
shuffle ablated is proved to have better performance than S1 - S4 , which 
means that the architecture with multiple-scale feature extractor, re-
sidual module, and SE-Module have the capability to predict fault types 

The area with the darkest color

Fig. 10. Testing accuracy on Task1 (a) and Task5 (b) w.r.t γ and α .  

Fig. 11. Testing accuracy of the proposed method under various working 
conditions (in 12 tasks). 

Table 9 
Comparison of JDFA with the variants.  

Methods S1  S2  S3  S4  S5  S6  

Multiple-scale feature extractor?   √ √ √ √ 
Residual module?  √  √ √ √ 
SE-Module?  √ √  √ √ 
Channel shuffle?  √ √ √  √ 
Accuracy C1  83.834 85.866 75.400 71.068 92.900  98.615 

C2  89.399 87.843 76.232 83.900 89.466  98.284 
C3  88.067 89.112 75.167 96.435 89.268  99.834 
C4  89.233 76.934 74.000 96.166 93.300  99.850 
C5  86.500 71.934 88.432 84.202 87.334  98.753 
C6  89.834 89.278 92.466 84.366 94.167  98.732 
C7  84.067 84.233 81.634 80.399 83.568  98.635 
C8  78.766 90.667 70.232 76.800 86.300  98.448 
C9  93.066 85.991 92.800 84.033 97.767  99.884 
C10  91.501 92.792 92.467 96.667 88.932  99.800 
C11  92.801 90.694 88.000 98.499 88.268  99.649 
C12  92.301 91.028 91.667 95.500 96.334  99.652 
Average 88.281 86.364 83.208 87.336 90.634  99.178 

Transfer ratio (TR) 0.8867 0.8675 0.8359 0.8771 0.9104 0.9963  
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accurately. The channel shuffle module is helpful to make the trained 
neural network sufficiently stable and generalizable instead of 
improving final accuracy essentially. 

Through analysis of the ablation experiment, the architecture pro-
posed with all additional operations can achieve the best performance. 
Every module in the overall framework is unique and the ablation of a 
certain module will cause worse prediction results under all 12 tasks. 

5. Discussion 

For transfer learning studies, the challenge often lies in lack of 
labeled data in the target domain, while the proposed method can 
reduce the discrepancy between the source and the target domain, to 
conduct fault diagnosis for target domain samples lacking labels through 
the diagnostic information of source domain samples. In the proposed 
model, diverse feature aggregation (DFA) and joint distribution adap-
tation are developed. Through diverse feature aggregation, the CNN 
backbone is improved to obtain better feature extraction capability. The 
joint distribution adaptation is realized through JMMD to reduce the 
cross-domain discrepancy. The proposed method has obvious advan-
tages over other methods in the TDM scenario. JDFA has the capability 
to output remarkable transfer performance with stability and robustness 
through case-by-case analysis. For all 12 cross-machine transfer tasks/ 
cases with diverse distribution discrepancies, the proposed JDFA can 
successfully diagnose the health status of unlabeled PDB samples 
through labeled CWRU samples with diagnostic accuracy above 98% 
and transfer loss less than 2. That is, corresponding results show supe-
riority when comparing with other state-of-the-art frameworks even if 
evaluating performance for each transfer case. Furthermore, the pro-
posed DFA and JMMD can be easily embedded in other machine 
learning models or deep learning models to achieve the transfer effect. 

In order to conduct the study of cross-machine transfer learning, the 
large discrepancy in sample characteristics between the source and 
target domains is another challenge. Based on Tables 5 and Fig. 8, it can 
be learned that the diagnostic performance of either model will always 
vary on different tasks. For example, tasks 9–12 always perform better 
than tasks 5–8. This may result from the narrower distribution 
discrepancy between the source and target domains for tasks 9–12. 
Obviously, CNN does not take into account the discrepancies in feature 
distributions, and shallow transfer learning methods (TCA, JDA) are also 
difficult to obtain good transfer results for large differences in feature 
space across machines. Deep transfer learning models such as DDC and 
DAN have better transfer results for tasks with small discrepancies in 
distributions, but still, fail to obtain satisfactory results for tasks with 
large discrepancies in distributions. In the task of transfer learning, it is 
inevitable that there is a huge discrepancy between the source domain 
and target domain, which is well solved by the proposed model through 
the joint distribution adaptation combined with diverse feature aggre-
gation. The comparison experiment also proves the superiority of the 
proposed model. Moreover, due to data augmentation applied in the 
experiment, a small number of samples from the CWRU data set and PDB 
data set are expanded, so that cross-machine fault diagnosis also could 
be realized in the case of small samples. In addition, simple data pre-
processing, such as down-sampling and normalization can reduce the 
distribution discrepancies of sample characteristics between the source 
domain and target domain. 

To some extent, the proposed model JDFA is not only a model for 
bearing diagnosis but also a set of methods for mechanical fault diag-
nosis. Its application can be extended to other scenarios, such as spindles 
blade tools, gearboxes, and other mechanical equipment. We hope to 
expand its application in more scenarios in future work. 

On the other hand, even though the proposed JDFA framework can 
achieve excellent and steady transfer performance for bearing diagnosis 
under cross-machine scenarios, fractional experiment results raise un-
solved issues that should be considered in future work. Firstly, promo-
tion tests and applications in more actual factory scenarios should be 
carried out to improve the transferability for complex data of the model. 
Secondly, through sensitivity analysis and ablation analysis, it can be 

Table 10 
Parameter setting of overall network.  

Layers Modules Components Receptive field 
size 

Output 
channel 

Layer1 Multiple-scale 
receptive field 

Conv1_1 5 × 1 8 
Conv1_2 7 × 1 8 
Conv1_3 9 × 1 8 

Conv1_4 – 5 × 1 24 
Conv1_5 – 5 × 1 24 
SE- Module Global 

pooling1 
1200 – 

Dense1_1 24 – 
ReLU – – 
Dense1_2 2 – 
Sigmoid – – 

ReLU – – – 
Avg-pooling1 – 5 × 1 – 

Layer2 Multiple-scale 
receptive field 

Conv2_1 5 × 1 32 
Conv2_2 7 × 1 32 
Conv2_3 9 × 1 32 

Conv2_4 – 5 × 1 96 
Conv2_5 – 5 × 1 96 
SE- Module Global 

pooling2 
240 – 

Dense2_1 96 – 
ReLU – – 
Dense2_2 6 – 
Sigmoid – – 

ReLU – – – 
Avg-pooling2 – 5 × 1 – 

Layer3 Multiple-scale 
receptive field 

Conv3_1 5 × 1 128 
Conv3_2 7 × 1 128 
Conv3_3 9 × 1 128 

Conv3_4 – 5 × 1 384 
Conv3_5 – 5 × 1 384 
SE- Module Global 

pooling3 
48 – 

Dense3_1 348 – 
ReLU – – 
Dense3_2 24 – 
Sigmoid – – 

ReLU – – – 
Avg-pooling3 – 5 × 1 – 

Layer4 Multiple-scale 
receptive field 

Conv4_1 5 × 1 512 
Conv4_2 7 × 1 512 
Conv4_3 9 × 1 512 

Conv4_4 – 5 × 1 1536 
Conv4_5 – 5 × 1 1536 
SE- Module Global 

pooling4 
9 – 

Dense4_1 1536 – 
ReLU – – 
Dense4_2 96 – 
Sigmoid – – 

ReLU – – – 
Avg-pooling4 – 5 × 1 – 

Tanh   –  
FC1 – – 1536 – 
FC2 – – 128 – 
Softmax – – – –  
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found that the accuracies for some tasks are relatively poor, and the 
stability or robustness of the diagnosis framework is needed to be 
improved in future work when network structure is modified and 
network parameters are adjusted. This may be crucial for the diagnosis 
system to tackle more types of transfer tasks/cases or actual factory 
scenarios with complex data distribution. In the following research, 
mode advanced neural network structure and more detailed analysis for 
formulizing distribution discrepancy should be explored. Thirdly, it is 
still a lack for considering the impact of model computing overhead, 
which may affect the practical deployment in an actual factory envi-
ronment. The testing time (diagnosis time) of the proposed framework is 
about 0.0237 s, considering the impact of model computing load on the 
actual situation of the factory, a more efficient transfer algorithm should 
be developed to reduce computing overhead and achieve a tradeoff 
between transfer performance and computing overhead. 

6. Conclusion 

In the paper, we propose a transfer learning framework named JDFA 
to solve the problem of bearing diagnosis across different machines with 
drastic domain variance. Based on pre-processed vibration signal from 
the source and the target domain respectively, the proposed JDFA 
method extracts hierarchical features by diverse feature aggregation 
(DFA) extractor, and constrains the distribution discrepancy between 
source and target domain by formulizing and minimizing JMMD, to 
realize the health diagnosis for the target domain samples. In order to 
demonstrate the advantages of the proposed method, the JDFA frame-
work is verified under 12 cross-machine transfer learning tasks based on 
CWRU and PDB data sets in evaluation phase. Validation results show 
that JDFA can achieve outstanding transfer performance with 99.178% 
in diagnosis accuracy, 0.367 for transfer loss, and 0.9963 in view of 
transfer ratio, which outperform other state-of-the-art diagnosis frame-
works for comparison. The above results analysis reflects that the pro-
posed method has promising application prospects for bearing diagnosis 
in practical industrial scenarios through experimental verification. 
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Appendix 

The parameter setting of overall feature extracting network, i.e., DFA 
extractor is presented in detail in Table 10. 

Simulation system information: The proposed architecture is con-
structed and conducted under Ubuntu 16.04 system, hardware platform 
with 256 GB Memory, Intel Xeon E5-2683 v4 @ 2.1Ghz CPU, and Nvi-
diamailto:v4@2.1Ghz, Nvidia Geforce GTX 1080Ti 11G GPU. 

Meanwhile, following environment and dependent libraries are 
needed when training and testing the proposed framework, as shown in 
Table 11. 

Fig. 12. Testing accuracy of the methods S1 - S6 on tasks 1–12.  

Table 11 
Environment and dependent libraries for experiment.  

Environment and 
dependent libraries 

Function 

Python 3.8.2 The basic programming language 
Pytorch-gpu 1.5.0 The deep learning framework to construct proposed 

neural network and other network architecture for 
comparison 

Scikit-learn 0.23.2 Construct TCA and JDA framework 
Numpy 1.18.1 Complete corresponding matrix operation 
Pandas 1.1.4 Complete pre-processing of input data 
Seaborn 0.11.0 Plot the distribution of data from source domain and 

target domain 
Tensorboard 2.2.1 View the accuracy-iteration curve during training 

process 
Scipy 1.4.1 Deal with some scientific computing  
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